基于选择性集成分类器的面部表情识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-3695.2017.12.069

基于选择性集成分类器的面部表情识别研究

引用
为了提高面部表情的分类识别性能,基于集成学习理论,提出了一种二次优化选择性(quadratic optimization choice,QOC)集成分类模型.首先,对于九个基分类器,依据性能进行排序,选择前30%的基分类器作为集成模型的候选基分类器;其次,依据组合规则产生集成模型簇;最后,对集成模型簇进行二次优化选择,选择具有最小泛化误差的集成分类器的子集,从而确定最优集成分类模型.为了验证QOC集成分类模型的性能,选择采用最大值、最小值和均值规则的集成模型作为对比模型.实验结果表明,相对基分类器,QOC集成分类模型取得了较好的分类效果,尤其是对于识别率较差的悲伤表情类,平均识别率提升了21.11%;相对于非选择性集成模型,QOC集成分类模型识别性能也有显著提高.

选择性集成学习、多分类器、面部表情识别

34

TP391.41(计算技术、计算机技术)

西安市科学计划资助项目2017079CG/RC042XAKD001

2018-01-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

3825-3827,3833

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用研究

1001-3695

51-1196/TP

34

2017,34(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn