基于SVM的特征筛选方法及其若干应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-4160.2002.06.006

基于SVM的特征筛选方法及其若干应用

引用
对于拟合问题,传统的模式识别特征筛选方法以各特征量对训练数据拟合能力的贡献为取舍标准,未考虑经验风险最小化和结构风险最小化间的差别,不能获得预报能力最强的特征筛选结果.为此我们提出了结合支持向量回归法与留一法的特征筛选新算法,并将它试用于镍氢电池材料和氧化铝净溶出率两套实验数据集的特征筛选.

特征筛选、支持向量回归、留一法、预报能力

19

O06-04

国家自然科学基金50174038

2004-04-09(万方平台首次上网日期,不代表论文的发表时间)

共3页

703-705

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与应用化学

1001-4160

11-3763/TP

19

2002,19(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn