基于双向长短时记忆和卷积Transformer的声学词嵌入模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2023010062

基于双向长短时记忆和卷积Transformer的声学词嵌入模型

引用
示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型.首先,使用Bi-LSTM提取特征、对语音序列进行建模,并通过叠加方式来提高模型的学习能力;其次,为了能在捕获全局信息的同时学习到局部信息,将CNN和Transformer编码器并联连接组成卷积Transformer,充分利用它在特征提取上的优势,聚合更多有效的信息,提高嵌入的区分性.在对比损失约束下,所提模型平均精度达到了94.36%,与基于注意力的Bi-LSTM模型相比,平均精度提高了1.76%.实验结果表明,所提模型可以有效改善模型性能,更好地实现示例查询语音关键词检测.

卷积神经网络、声学词嵌入、语音信息、示例查询语音关键词检测、循环神经网络

44

TP183(自动化基础理论)

2024-01-31(万方平台首次上网日期,不代表论文的发表时间)

共6页

123-128

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

44

2024,44(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn