10.11772/j.issn.1001-9081.2022081270
基于多个改进策略的增强麻雀搜索算法
针对麻雀搜索算法(SSA)存在寻优精度不高且易陷入局部最优的问题,提出一种基于多个改进策略的增强麻雀搜索算法(EMISSA).首先,为平衡算法的全局和局部搜索能力,引入模糊逻辑来动态调整麻雀发现者的规模;其次,对麻雀跟随者进行混合差分变异操作以产生变异子群,从而增强EMISSA跳出局部最优的能力;最后,通过拓扑对立学习(TOBL)产生当前麻雀发现者个体的拓扑对立解,以充分挖掘搜索空间内的优质位置信息.通过2013年进化计算大会(CEC2013)中的12个测试函数评估EMISSA、标准SSA以及混沌麻雀搜索优化算法(CSSOA)等改进麻雀算法的性能.实验结果表明,EMISSA在30维情况下,在12个测试函数上获得了11个第一;在80维情况下,在所有的测试函数上都获得了第一.而在Friedman检验中,EMISSA的排名均获得了第一.将EMISSA应用于障碍物环境下的无线传感器网络(WSN)节点部署,实验结果表明,相较于其他算法,EMISSA获得了最高的无线节点覆盖率,节点分布更均匀,覆盖冗余更少.
麻雀搜索算法、模糊逻辑、混合差分变异操作、拓扑对立学习、无线传感器网络、节点部署
43
TP301.6(计算技术、计算机技术)
2023-10-09(万方平台首次上网日期,不代表论文的发表时间)
共10页
2845-2854