基于多个改进策略的增强麻雀搜索算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2022081270

基于多个改进策略的增强麻雀搜索算法

引用
针对麻雀搜索算法(SSA)存在寻优精度不高且易陷入局部最优的问题,提出一种基于多个改进策略的增强麻雀搜索算法(EMISSA).首先,为平衡算法的全局和局部搜索能力,引入模糊逻辑来动态调整麻雀发现者的规模;其次,对麻雀跟随者进行混合差分变异操作以产生变异子群,从而增强EMISSA跳出局部最优的能力;最后,通过拓扑对立学习(TOBL)产生当前麻雀发现者个体的拓扑对立解,以充分挖掘搜索空间内的优质位置信息.通过2013年进化计算大会(CEC2013)中的12个测试函数评估EMISSA、标准SSA以及混沌麻雀搜索优化算法(CSSOA)等改进麻雀算法的性能.实验结果表明,EMISSA在30维情况下,在12个测试函数上获得了11个第一;在80维情况下,在所有的测试函数上都获得了第一.而在Friedman检验中,EMISSA的排名均获得了第一.将EMISSA应用于障碍物环境下的无线传感器网络(WSN)节点部署,实验结果表明,相较于其他算法,EMISSA获得了最高的无线节点覆盖率,节点分布更均匀,覆盖冗余更少.

麻雀搜索算法、模糊逻辑、混合差分变异操作、拓扑对立学习、无线传感器网络、节点部署

43

TP301.6(计算技术、计算机技术)

2023-10-09(万方平台首次上网日期,不代表论文的发表时间)

共10页

2845-2854

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

43

2023,43(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn