多模态预训练模型综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2022020296

多模态预训练模型综述

引用
预训练模型(PTM)通过利用复杂的预训练目标和大量的模型参数,可以有效地获得无标记数据中的丰富知识.而在多模态中,PTM的发展还处于初期.根据具体模态的不同,将目前大多数的多模态PTM分为图像-文本PTM和视频-文本PTM;根据数据融合方式的不同,还可将多模态PTM分为单流模型和双流模型两类.首先,总结了常见的预训练任务和验证实验所使用的下游任务;接着,梳理了目前多模态预训练领域的常见模型,并用表格列出各个模型的下游任务以及模型的性能和实验数据比较;然后,介绍了M6(Multi-Modality to Multi-Modality Multitask Mega-transformer)模型、跨模态提示调优(CPT)模型、VideoBERT(Video Bidirectional Encoder Representations from Transformers)模型和AliceMind(Alibaba's collection of encoder-decoders from Mind)模型在具体下游任务中的应用场景;最后,总结了多模态PTM相关工作面临的挑战以及未来可能的研究方向.

多模态、预训练模型、图像-文本预训练模型、视频-文本预训练模型、神经网络、单流模型、双流模型

43

TP391.1(计算技术、计算机技术)

国家语委重点研发项目ZDI135-96

2023-04-25(万方平台首次上网日期,不代表论文的发表时间)

共14页

991-1004

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

43

2023,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn