联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021111888

联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型

引用
针对地面气象站点分布稀疏影响站点间关系以及站点间的关系强度推理难的问题,提出一种基于联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型(GDM).GDM包括时空注意力(TSA)、双向图神经长短期记忆(DG-LSTM)网络编码和边-点转换双向门控循环网络解码(EN-GRU)模块.首先使用TSA模块提取MOD11A1图像特征并形成多个虚拟气象站点的温度时间序列,缓解地面气象站点分布稀疏对站点间关系的影响;然后用DG-LSTM编码器通过融合两组温度时间序列来计算地面气象站点间和虚拟气象站点间的关系强度;最后用EN-GRU解码器通过结合站点间的关系强度对地面气象站点的温度时间序列关系进行建模.实验结果表明,相较于二维卷积神经网络(2D-CNN)、长短期记忆全连接网络(LSTM-FC)、长短期记忆神经网络扩展网络(LSTME)和长短记忆与自适应提升集成网络(LSTM-AdaBoost),GDM在10个地面气象站点24 h内温度预测的平均绝对误差(MAE)分别减小0.383℃、0.184℃、0.178℃和0.164℃,能提高未来24 h多个气象站点温度的预测精度.

温度预测、注意力机制、深度学习、长短期记忆网络、门控循环单元、图神经网络、MOD11A1、地面气象站点

43

TP389.1(计算技术、计算机技术)

国家自然科学基金;河北省自然科学基金资助项目;河北省教育厅科学技术研究项目

2023-02-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

321-328

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

43

2023,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn