基于贝叶斯优化的无标签网络剪枝算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021112020

基于贝叶斯优化的无标签网络剪枝算法

引用
针对深度神经网络(DNN)的参数和计算量过大问题,提出一种基于贝叶斯优化的无标签网络剪枝算法.首先,利用全局剪枝策略来有效避免以逐层方式修剪而导致的模型次优压缩率;其次,在网络剪枝过程中不依赖数据样本标签,并通过最小化剪枝网络与基线网络输出特征的距离对网络每层的压缩率进行优化;最后,利用贝叶斯优化算法寻找网络每一层的最优剪枝率,以提高子网搜索的效率和精度.实验结果表明,使用所提算法在CIFAR-10数据集上对VGG-16网络进行压缩,参数压缩率为85.32%,每秒浮点运算次数(FLOPS)压缩率为69.20%,而精度损失仅为0.43%.可见,所提算法可以有效地压缩DNN模型,且压缩后的模型仍能保持良好的精度.

深度神经网络、模型压缩、网络剪枝、网络结构搜索、贝叶斯优化

43

TP183(自动化基础理论)

宁夏自然科学基金资助项目2018A0899

2023-02-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

30-36

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

43

2023,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn