融合优化特征提取结构的目标检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021122122

融合优化特征提取结构的目标检测算法

引用
针对DETR对小目标的检测精度低的问题,基于DETR提出一种优化特征提取结构的目标检测算法——CF?DETR.首先通过结合了优化跨阶段部分(CSP)网络的CSP?Darknet53对原始图进行特征提取并输出4种尺度的特征图;其次利用特征金字塔网络(FPN)对4种尺度特征图进行下采样和上采样后进行拼接融合,并输出52×52尺寸的特征图;最后将该特征图与位置编码信息结合输入Transformer后得到特征序列,输入到作为预测头的前向反馈网络后输出预测目标的类别与位置信息.在COCO2017数据集上,与DETR相比,CF?DETR的模型的超参数量减少了2×106,在小目标上的平均检测精度提高2.1个百分点,在中、大尺寸目标上的平均检测精度提高了2.3个百分点.实验结果表明,优化特征提取结构能够在降低模型超参数量的同时有效提高DETR的检测精度.

目标检测、小目标、DETR算法、特征提取、跨阶段部分网络、特征金字塔网络、Transformer

42

TP391.41(计算技术、计算机技术)

国家自然科学基金;重庆市教委科学技术研究计划项目;巴南区科委应用研究项目

2022-12-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

3558-3563

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

42

2022,42(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn