基于物联网平台的动态权重损失函数入侵检测系统
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021040692

基于物联网平台的动态权重损失函数入侵检测系统

引用
随着物联网(IoT)接入设备越来越多,以及网络管理维护人员缺乏对IoT设备的安全意识,针对IoT环境和设备的攻击逐渐泛滥.为了加强IoT环境下的网络安全性,利用基于IoT平台制作的入侵检测数据集,采用卷积神经网络(CNN)+长短期记忆(LSTM)网络为模型架构,利用CNN提取数据的空间特征,LSTM提取数据的时序特征,并将交叉熵损失函数改进为动态权重交叉熵损失函数,制作出一个针对IoT环境的入侵检测系统(IDS).经实验设计分析,并使用准确率、精确率、召回率和F1-measure作为评估参数.实验结果表明在CNN-LSTM网络架构下采用了动态权重损失函数的模型与采用传统的交叉熵损失函数的模型相比,前者比后者在使用数据集的地址解析协议(ARP)类样本中在F1-Measure上提升了47个百分点,前者比后者针对数据集中的其他少数类样本则提升了2个百分点~10个百分点.实验结果表明,动态权重损失函数能够增强模型对少数类样本的判别能力,且该方法可以提升IDS对少数类攻击样本的判断能力.

动态权重损失函数、入侵检测、深度学习、卷积神经网络、长短期记忆、物联网

42

TP309.5(计算技术、计算机技术)

中央高校基本科研业务费专项2020MS122

2022-08-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

2118-2124

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

42

2022,42(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn