基于压缩提炼网络的实时语义分割方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021050812

基于压缩提炼网络的实时语义分割方法

引用
针对目前语义分割算法难以取得实时推理和高精度分割间平衡的问题,提出压缩提炼网络(SRNet)以提高推理的实时性和分割的准确性.首先,在压缩提炼(SR)单元中引入一维(1D)膨胀卷积和类瓶颈结构单元,从而极大地减少模型的计算量和参数量;其次,引入多尺度空间注意(SA)混合模块,从而高效地利用浅层特征的空间信息;最后,通过堆叠SR单元构成编码器,并采用两块SA单元在编码器的尾部构成解码器.实验仿真表明,SRNet在仅有30 MB参数量及8.8×109每秒浮点操作数(FLOPS)的情况下,仍可在Cityscapes数据集上获得68.3%的平均交并比(MIoU).此外,所提模型在单块NVIDIA Titan RTX卡上实现了12.6帧每秒(FPS)的前向推理速度(输入像素的大小为512×1024×3).实验结果表明,所设计的轻量级模型SRNet很好地在准确分割和实时推理间取得平衡,适用于算力及功耗有限的场合.

语义分割、轻量级网络、实时推理、空间注意混合模块、一维膨胀卷积

42

TP391.4(计算技术、计算机技术)

国家自然科学基金62006073

2022-08-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

1993-2000

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

42

2022,42(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn