基于小波特征与注意力机制结合的卷积网络车辆重识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021040545

基于小波特征与注意力机制结合的卷积网络车辆重识别

引用
针对现有的基于卷积神经网络(CNN)的车辆重识别方法所提取的特征表达力不足的问题,提出一种基于小波特征与注意力机制相结合的车辆重识别方法.首先,将单层小波模块嵌入到卷积模块中代替池化层进行下采样,减少细粒度特征的丢失;其次,结合通道注意力(CA)机制和像素注意力(PA)机制提出一种新的局部注意力模块——特征提取模块(FEM)嵌入到卷积网络中,对关键信息进行加权强化.在VeRi数据集上与基准残差网络ResNet-50、ResNet-101进行对比.实验结果表明,在ResNet-50中增加小波变换层数能提高平均精度均值(mAP);在消融实验中,虽然ResNet-50+离散小波变换(DWT)比ResNet-101的mAP降低了0.25个百分点,但是其参数量和计算复杂度都比ResNet-101低,且mAP、Rank-1和Rank-5均比单独的ResNet-50高,说明该模型在车辆重识别中能够有效提高车辆检索精度.

车辆重识别、通道注意力、像素注意力、小波变换、卷积神经网络

42

TP391.41(计算技术、计算机技术)

国家自然科学基金32060238

2022-07-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

1876-1883

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

42

2022,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn