面向视觉问答的跨模态交叉融合注意网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2021030470

面向视觉问答的跨模态交叉融合注意网络

引用
为了提高视觉问答(VQA)模型回答复杂图像问题的准确率,提出了面向视觉问答的跨模态交叉融合注意网络(CCAN).首先,提出了一种改进的残差通道自注意方法对图像进行注意,根据图像整体信息来寻找重要区域,从而引入一种新的联合注意机制,将单词注意和图像区域注意结合在一起;其次,提出一种"跨模态交叉融合"网络生成多个特征,将两个动态信息流整合到一起,每个模态内产生有效的注意流,其中对联合特征使用逐元素相乘的方法.此外,为了避免计算成本增加,网络之间共享参数.在VQA v1.0数据集上的实验结果表明,该模型的准确率达到67.57%,较MLAN模型提高了2.97个百分点,较CAQT模型提高了1.20个百分点.所提方法有效提高了视觉问答模型的准确率,具有有效性和鲁棒性.

视觉问答、联合注意、交叉融合、残差通道、联合特征

42

TP391.41(计算技术、计算机技术)

贵州省科技成果转化项目

2022-04-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

854-859

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

42

2022,42(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn