结合注意力机制的Bi-LSTM-CRF中文电子病历命名实体识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2019081371

结合注意力机制的Bi-LSTM-CRF中文电子病历命名实体识别

引用
在中文电子病历命名实体识别任务中,为了消除传统命名实体识别方法高度依赖人工提取特征这一不足,设计了双向长短时记忆(Bi-LSTM)网络与条件随机场(CRF)结合的网络模型,并在联合网络的基础上添加注意力机制,从而优化实体识别准确率.首先,将中文电子病历数据集进行脱敏处理及序列标注等预处理;其次,结合词嵌入技术将电子病历文本序列进行词向量化表示,并利用Bi-LSTM网络模型构造包含前向和后向文本的语义特征;然后,将双向特征序列输入到注意力层,利用注意力机制对文本特征向量的语义编码分配不同的注意力权重,进一步强化当前信息与上下文信息之间潜在的语义关联性;最后,输入到CRF层中,由此提取出实体.实验结果表明,该注意力机制与Bi-LSTM-CRF模型融合的新方法能有效提高中文电子病历命名实体识别的准确率.

电子病历、双向长短时记忆网络、条件随机场、注意力机制、实体识别

40

TP391(计算技术、计算机技术)

京津冀协同创新项目17YFXTZC0020

2020-08-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

98-102

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

40

2020,40(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn