基于级联卷积神经网络的手势特征提取方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2019122123

基于级联卷积神经网络的手势特征提取方法

引用
针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法.该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取.首先,将手腕角度参数作为手势参数的全局参数,进行划分和特征提取;然后,将手指角度参数作为局部参数,进行特征提取.为解决局部参数特征提取网络数量过多的问题,减少神经网络的数量和节约训练网络所需的时间与内存开销,采用多分支结构的神经网络模型,将五个手指的局部特征提取网络集成为一个整体.实验结果表明,所提方法在真实训练集上平均分类准确率达到95.13%,测试集平均准确率达到54%,测试集准确率相较于全卷积神经网络的算法提高了4.76个百分点.

手势主方向、特征提取、多分支结构、级联卷积神经网络、手势数据集

40

TP391.4(计算技术、计算机技术)

国家自然科学基金资助项目;广西科技重大专项;广西重点研发计划项目;广西自然科学基金资助项目;广西科技基地和人才专项;桂林科技发展计划项目;广西云计算与大数据协同创新中心项目

2020-08-07(万方平台首次上网日期,不代表论文的发表时间)

共6页

74-79

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

40

2020,40(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn