基于长短时记忆单元和卷积神经网络混合神经网络模型的视频着色方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2019020264

基于长短时记忆单元和卷积神经网络混合神经网络模型的视频着色方法

引用
视频可以看作是连续的视频帧图像组成的序列,视频彩色化的实质是对图像进行彩色化处理,但由于视频的长期序列性,若直接将现有的图像着色方法应用到视频彩色化上极易产生抖动或闪烁现象.针对这个问题,提出一种结合长短时记忆(LSTM)和卷积神经网络(CNN)的混合神经网络模型用于视频的着色.该方法用CNN提取视频帧的语义特征,同时使用LSTM单元学习灰度视频的时序信息,保证视频的时空一致性,然后融合局部语义特征和时序特征,生成最终的彩色视频帧序列.通过对实验结果的定量分析和用户研究表明,该方法在视频彩色化上实现了较好的效果.

视频彩色化、长短时记忆、卷积神经网络、时空一致性

39

TP391.4(计算技术、计算机技术)

2019-10-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

2726-2730

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

39

2019,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn