基于级联Vnet-S网络的CT影像单一器官自动分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2018122445

基于级联Vnet-S网络的CT影像单一器官自动分割算法

引用
为了快速准确地对计算机断层扫描(CT)影像中的器官进行分割,提出基于级联Vnet-S网络的单一器官自动分割算法.首先,使用第一个Vnet-S网络对CT影像中的器官进行粗分割;然后,选择分割结果中的最大连接通量做两次膨胀,根据膨胀后的最大连接通量确定器官边界并提取器官区域;最后,使用第二个Vnet-S网络对器官进行细分割.为了验证算法的性能,采用MICCAI 2017 Liver Tumor Segmentation Challenge (LiTS)数据集进行肝脏分割实验,采用ISBI LUng Nodule Analysis 2016 (LUNA16)数据集进行肺分割实验.级联Vnet-S算法在LiTS的70例线上测试数据上的Dice系数为0.9600,在LUNA16的288例测试数据上的Dice系数为0.9810,均高于Vnet-S网络和Vnet网络.实验结果表明,基于级联Vnet-S网络的单一器官分割算法可以准确地对器官进行分割,而且级联Vnet-S算法的计算量小于Unet网络和Vnet网络.

器官分割、Vnet-S、深度学习、分割网络、级联网络结构

39

TP391.4(计算技术、计算机技术)

2019-09-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

2420-2425

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

39

2019,39(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn