基于Spark与粒子滤波算法的公交到站时间预测系统
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2018081800

基于Spark与粒子滤波算法的公交到站时间预测系统

引用
针对公交车到站时间预测准确性不高的问题,选用具有流式计算特点的粒子滤波(PF)算法,建立了一个公交到站时间预测模型.为更好地解决使用PF算法过程中存在的预测误差及粒子优化选择问题,通过引入上一趟公交车的行驶速度和构造观测值的方法对预测模型进行改进,使之具有更贴近实际路况的公交到站时间预测精度,并且能同时预测多个公交到达时间.基于该模型和Spark平台实现了一套公交到站时间实时预测软件系统,所有到站时间预测结果与实际相比,平峰的最大绝对误差为207 s,平均绝对误差为71.67 s;高峰的最大绝对误差为270 s,平均绝对误差为87.61 s,而预测结果的平均绝对误差在2min以内是公认的理想结果.实验结果表明,所提模型及实现系统能准确预测公交到站时间,满足乘客实际需求.

公交到站时间预测、粒子滤波算法、流计算、Spark

39

TP311(计算技术、计算机技术)

国家自然科学基金资助项目61662051

2019-03-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

429-435

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

39

2019,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn