基于扩展的低阶多元广义线性模型的脑节点识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2018020432

基于扩展的低阶多元广义线性模型的脑节点识别方法

引用
针对现有单节点模型识别准确度较低以及低阶多元广义线性模型(LRMGLM)计算时间过长和使用局限性问题,提出基于扩展的低阶多元广义线性模型(ELRMGLM)的脑节点识别方法.首先,建立可以同时处理两次实验所有节点数据的ELRMGLM,以更多的时间空间信息来提高算法的准确度;然后,利用带时空平滑惩罚项的优化函数引入先验信息,并通过迭代函数对模型参数进行求解;最后,使用基于K-means的快速选择策略实现惩罚参数和大脑节点的快速选择.三次样本实验中,ELRMGLM的准确度分别比经典血液动力学响应函数(canonical)方法、平滑有限脉冲响应(SFIR)方法、正则化和广义交叉验证(Tik-GCV)方法的最优结果提升了约20%、8%、20%,略优于LRMGLM,且计算时间是LRMGLM的1/750.实验结果表明,ELRMGLM能有效提高大脑节点的识别准确度,减少计算时间.

功能性磁共振成像、广义线性模型、优化函数、迭代算法、K-means聚类

38

TP399(计算技术、计算机技术)

青年拔尖人才支持计划项目

2018-11-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

3048-3052

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

38

2018,38(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn