基于改进的多层BLSTM的中文分词和标点预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.201711112631

基于改进的多层BLSTM的中文分词和标点预测

引用
目前主流的序列标注问题是基于循环神经网络(RNN)实现的.针对RNN和序列标注问题进行研究,提出了一种改进型的多层双向长短时记忆(BLSTM)网络,该网络每层的BLSTM都有一次信息融合,输出包含更多的上下文信息.另外找到一种基于序列标注的可以并行执行中文分词和标点预测的联合任务方法.在公卉的数据集上的实验结果表明,所提出的改进型的多层BLSTM网络模型性能优越,提升了中文分词和标点预测的分类精度;在需要完成中文分词和标点预测两项任务时,联合任务方法能够大幅地降低系统复杂度;新的模型及基于该模型的联合任务方法也可应用到其他序列标注任务中.

中文分词、标点预测、序列标注、双向长短时记忆网络

38

TP391.1(计算技术、计算机技术)

2018-06-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

1278-1282,1314

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

38

2018,38(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn