基于改进模糊支持向量回归模型的机场能源需求预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2016.05.1458

基于改进模糊支持向量回归模型的机场能源需求预测

引用
针对离群点在机场能源数据的预测和分析中存在干扰等问题,建立了一种基于改进模糊支持向量回归(FSVR)的机场能源需求预测模型.首先,采用模糊统计法对测试样本集、系统参数和模型输出进行分析,推导出符合其数据分布的基本隶属函数形式;其次,结合例证法、专家经验法对隶属函数进行“再学习”,逐步修改和完善正态隶属函数a、6参数值,半梯形隶属函数边界参数值及三角隶属函数p、d参数值,以此消除或减少不利数据挖掘的离群点,同时保留有效关键点;最后,结合支持向量回归(SVR)算法,建立预测模型,并验证了该模型的可行性.实验结果表明,与反向传播(BP)神经网络方法相比,FSVR方法的预测准确率提高了2.66%,对离群点的识别率提高了3.72%.

机场能源需求预测、模糊支持向量回归、支持向量机、模糊隶属度、离群点

36

TP181(自动化基础理论)

民航局科技创新引导资金项目应用技术研发类20150227;the Science and Technology Innovation Conducted Funds Program of the Civil Aviation Authority CAACategory in the Research and Development of Application Technology20150227

2016-07-07(万方平台首次上网日期,不代表论文的发表时间)

共6页

1458-1463

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

36

2016,36(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn