基于粒子群优化算法的虚拟机部署策略
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11772/j.issn.1001-9081.2016.01.0117

基于粒子群优化算法的虚拟机部署策略

引用
针对云计算基础设施即服务(IaaS)中的虚拟机部署问题,提出一种基于粒子群优化(PSO)算法的部署策略.由于PSO算法在处理虚拟机部署这类大规模复杂问题时,具有收敛速度慢且容易陷入局部最优的缺点,首先,引入多种群进化模式提高算法收敛速度,并在此基础上加入高斯学习策略避免局部最优,提出了一种多种群高斯学习粒子群优化(MGL-PSO)算法;然后,根据部署模型,使用轮询(RR)算法对MGL-PSO进行初始化,进而提出了一种以负载均衡为目标的虚拟机部署策略.通过在CloudSim中进行仿真实验,验证了在解决虚拟机部署问题时,MGL-PSO相比PSO算法,具有更快的收敛速度,并且负载不均衡度降低了13.1%.在两种实验场景下,所提算法相比随机负载均衡(OLB)算法,其负载不均衡度分别平均降低了25%和15%;相比贪婪算法(GA),使负载不均衡度分别平均降低了19%和7%.

虚拟机部署、粒子群优化、负载均衡、高斯学习、多种群进化

36

TP311;TP18(计算技术、计算机技术)

2016-03-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

117-121

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

36

2016,36(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn