基于Ranking Loss的多标签分类集成学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于Ranking Loss的多标签分类集成学习算法

引用
针对目标可以属于多个类别的多标签分类问题,提出了一种基于Ranking Loss最小化的集成学习方法.算法基于Real AdaBoost算法的核心思想,从Ranking Loss定义出发,以Ranking Loss在样本空间最小化为目标,采取迭代的方法训练多个弱分类器,并将这些弱分类器集成起来构成强分类器,强分类器的Ranking Loss随着弱分类器个数的增加而逐渐减少,并给出了算法流程.通过理论分析和实验数据对比验证了提出的多标签分类算法的有效性和稳定性.

多标签分类、AdaBoost算法、Ranking Loss、分类器组合、集成学习

33

TP181(自动化基础理论)

四川省科技支撑计划项目2011GZ0171

2013-08-07(万方平台首次上网日期,不代表论文的发表时间)

共4页

40-42,68

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

33

2013,33(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn