基于数学形态学及支持向量机的心率失常识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3724/SP.J.1087.2013.01173

基于数学形态学及支持向量机的心率失常识别

引用
为实现对不同类型的心电图自动分析,研究并提出了一种顺序筛选极大值的R波定位算法,并采用支持向量机(SVM)进行最后的心律失常心拍识别.定位算法以数学形态学为基础,结合心电图自身特点,定义R波筛选区间,避免了传统算法中的阈值选择;定位R波峰后以R波峰为中心提取不同类型的心率失常的心拍,选择径向基(RBF)支持向量机进行识别分类.使用MIT-BIH心率失常数据库文件进行实验仿真,结果表明,算法对含不同类型心拍的心电图R波峰正确检测率较高(99.36%),学习后的SVM能有效识别早搏、房颤、束支传导阻滞、正常等不用类型心拍,总体识别率达到99.75%.

心电图、数学形态学、R波检测、心律失常分类、支持向量机

33

TP391.9(计算技术、计算机技术)

2013-05-10(万方平台首次上网日期,不代表论文的发表时间)

共3页

1173-1175

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

33

2013,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn