基于MapReduce的K-Medoids并行算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3724/SP.J.1087.2013.01023

基于MapReduce的K-Medoids并行算法

引用
为了解决传统K-Medoids聚类算法在处理海量数据信息时所面临的内存容量和CPU处理速度的瓶颈问题,在深入研究K-Medoids算法的基础之上,提出了基于MapReduce编程模型的K-Medoids并行化算法思想.Map函数部分的主要任务是计算每个数据对象到簇类中心点的距离并(重新)分配其所属的聚类簇;Reduce函数部分的主要任务是根据Map部分得到的中间结果,计算出新簇类的中心点,然后作为中心点集给下一次MapReduce过程使用.实验结果表明:运行在Hadoop集群上的基于MapReduce的K-Medoids并行化算法具有较好的聚类结果和可扩展性,对于较大的数据集,该算法得到的加速比更接近于线性.

K-Medoids、云计算、MapReduee、并行计算、Hadoop

33

TP18(自动化基础理论)

教育部新世纪优秀人才支持计划项目NCET-08-0660;河南省高校科技创新人才支持计划项目2008HASTTT012;海南省自然科学基金资助项目610221;河南工业大学研究生创新计划基金资助项目11YJCX69

2013-05-10(万方平台首次上网日期,不代表论文的发表时间)

共4页

1023-1025,1035

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

33

2013,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn