自适应变系数粒子群-径向基神经网络模型在负荷预测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

自适应变系数粒子群-径向基神经网络模型在负荷预测中的应用

引用
为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群-径向基函数神经网络混合优化算法(AVCPSO-RBF).实现了径向基神经网络参数优化.建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测.仿真表明,该方法的收敛速度和预测精度优于传统径向基神经网络方法和粒子群-RBF神经网络方法及基于混沌理论的神经网络模型,该优化算法克服了径向基神经网络和传统的粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,提高了贵州电网短期负荷预测的精度,各日预测负荷的平均百分比误差可控制在1.7%以内.该算法可有效用于电力系统的短期负荷预测.

短期负荷预测、自适应变系数粒子群、泛化能力、径向基神经网络

29

TM614;TP18(发电、发电厂)

国家火炬计划创新基金资助项目07C26213711606;陕西省自然科学基础研究计划项目SJ08E220;山东省软科学基金资助项目2007RKB188

2009-10-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

2454-2458

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用

1001-9081

51-1307/TP

29

2009,29(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn