基于改进YOLOv4的轻量化车牌检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2023.07.017

基于改进YOLOv4的轻量化车牌检测算法

引用
针对现有的车牌检测算法在复杂环境下检测效果不佳的问题,提出一种基于深度学习的GEG-YOLOv4轻量化车牌检测模型.该模型以YOLOv4为基础框架,采用轻量级网络GhostNet作为主干网络,大幅减少了模型参数量,并融入能够避免降维且能有效捕获跨通道交互信息的ECA注意力模块,增加车牌信息的通道权重,减小复杂环境背景对车牌信息的干扰.最后,在深层网络中使用Ghost模块来代替部分普通卷积,在进一步降低模型参数量的同时更好地保留了特征图的冗余信息.在大型车牌数据集CCPD上的实验结果表明,GEG-YOLOv4模型的参数量比YOLOv4减少了约88%,AP值增加了0.09%,速度提高了约55%.相较于其他方法,该方法对于复杂环境下的车牌数据具有更好的检测性能,可以满足实际应用场景的需要.

车牌检测、深度学习、复杂环境、轻量化、YOLOv4

TP391.4(计算技术、计算机技术)

邯郸市科学技术研究与发展计划项目21422031252

2023-08-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

99-104,111

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2023,(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn