基于聚类欠采样的集成分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2021.11.013

基于聚类欠采样的集成分类算法

引用
不平衡数据常出现在各应用领域中,传统分类器往往关注于多数类样本而导致样本分类效果不理想.针对此问题,提出一种基于聚类欠采样的集成分类算法(ClusterUndersampling-AdaCost,CU-AdaCost).该算法通过计算样本间维度加权后的欧氏距离得出各簇的样本中心位置,根据簇心邻域范围选择出信息特征较强的多数类样本,形成新的训练集;并将训练集放在引入代价敏感调整函数的集成算法中,使得模型更加关注于少数类别.通过对6组UCI数据集进行对比实验,结果表明,该算法在欠采样过程中抽取的样本具有较强的代表性,能够有效提高模型对少数类别的分类性能.

不平衡数据;聚类;欠采样;代价敏感

TP301.6(计算技术、计算机技术)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

72-76

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn