一种基于Cascade R-CNN的电子器件容器质检方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2020.11.006

一种基于Cascade R-CNN的电子器件容器质检方法

引用
电子器件容器生产是一种对安全性、高效性、完整性要求极高的过程,是各大企业必须要关注的问题.但是在实际的生产封装过程中,容器上的污渍、容器内的异物,外观的异常不可避免地出现,这些问题亟待解决.目前解决这些问题主要的检测方法还是人工检测和传统的机器视觉的方式,人工检测方式的缺点在于准确率高而效率低,传统机器视觉检测方式是效率高而准确率低,都难以满足高速自动化生产线要求.因此,本文提出一种基于Cascade R-CNN的电子器件容器质检方法,针对实际过程中的容器数据定向改进网络,加入Focal Loss检测难以区分的样本,使用可变形卷积更高效地提取特征,以多尺度训练方式训练强鲁棒性的模型,用于电子器件容器的多类别检测问题.实验结果表明提出的改进的基于Cascade R-CNN的电子器件容器质检模型具有高准确率和强鲁棒性.

目标检测、机器视觉、卷积神经网络、定向检测、可变形卷积网络、多尺度

TP18(自动化基础理论)

江苏省高等学校自然科学研究重大项目17KJA520004

2020-12-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

33-38,46

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2020,(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn