基于自步数据重构正则化的模糊C均值聚类算法改进
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2020.06.019

基于自步数据重构正则化的模糊C均值聚类算法改进

引用
为了有效降低模糊C均值算法对奇异值和噪声点的敏感性,本文提出一种自步数据重构正则化模糊C均值聚类算法.传统算法是在C均值算法的目标函数中引入加权参数来实现对数据的模糊性划分,而本文提出的方法则是通过对C均值的目标函数进行数据重构正则化来实现,并以自步学习的方式逐步对数据点进行聚类.实验结果表明,本文算法在模拟数据、实际数据以及在图像分割中都能显著降低算法对奇异值和噪声数据的敏感性,聚类更为准确高效.

模糊C均值、聚类划分、自步学习、数据重构正则化

TP391(计算技术、计算机技术)

2020-06-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

120-126

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2020,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn