基于自适应注意模型的图像描述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2020.06.015

基于自适应注意模型的图像描述

引用
结合注意力机制的编解码框架模型已经被广泛地应用在图像描述任务中.大多数方法都强制对生成的每个单词进行主动的视觉注意,然而,解码器很可能不需要关注图像中的任何视觉信息就生成非视觉单词,比如"the"和"of".本文提出一种自适应注意力模型,编码端采用Faster R-CNN网络提取图像中的显著特征,解码端LSTM网络中引入一个视觉监督信号.在每个时间步长,它可以自动地决定何时依赖于视觉信号,何时仅依赖于语言模型.最后在Flickr30K和MS-COCO数据集进行验证,实验结果表明该模型有效地提升了描述语句的质量.

注意力机制、卷积神经网络、长短时记忆网络(LSTM)、图像描述

TP391.41(计算技术、计算机技术)

2020-06-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

95-100

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2020,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn