融合用户评分和属性相似度的协同过滤推荐算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2017.07.003

融合用户评分和属性相似度的协同过滤推荐算法

引用
为了提高协同过滤推荐系统的推荐效率和准确性,更好地向用户提供个性化的推荐服务,提出一种用户评分和属性相似度的推荐算法.首先分析当前协同过滤推荐研究的现状,设计评分相似度、兴趣倾向相似度、置信度等作为评分标准,使得用户相似度的计算更加准确、有区分度,然后根据用户属性来衡量用户之间的相似度,最后利用MovieLens数据集和Book-Crossing数据集做对比试验,对比精度、通用性和不同稀疏度及冷启动情况下的性能.实验结果表明,本文算法不仅提高了推荐精度,而且明显优于其它协同过滤推荐算法,具有更高的实际应用价值.

推荐系统、协同过滤、相似性度量、稀疏性问题

TP311(计算技术、计算机技术)

2017-09-11(万方平台首次上网日期,不代表论文的发表时间)

共4页

16-19

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2017,(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn