基于AdaBoost的不完整数据的信息熵分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-2475.2013.09.007

基于AdaBoost的不完整数据的信息熵分类算法

引用
目前,针对不完整数据的集成分类算法没有考虑缺失属性之间的差异,在衡量各个子分类器的权值时仅仅考虑了数据集的大小以及包含属性的多少,并没有考虑各个数据子集之间属性的差异度.本文利用信息熵对各个子数据集的重要程度进行量化,进而评估从该数据集构建出的分类器的权值,使得在最终的加权投票过程更加公平,最终结果更加准确.使用基于multi-class AdaBoost的集成分类算法,以BP算法为基础分类器,对来自UCI的数据集进行实验,实验结果表明该算法在一定程度上提高了不完整数据的分类精度.

multi-class AdaBoost、信息熵、不完整数据、集成分类

TP181(自动化基础理论)

2013-10-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

31-34

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2013,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn