基于上下文Transformer的低光照图像增强网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9722.2023.01.037

基于上下文Transformer的低光照图像增强网络

引用
由于现实环境中明暗光照的剧烈变化,现有的低光照图像增强方法往往会导致增强后的图像亮度和对比度不足,出现伪影和模糊等情况.此外,当前的低光照图像增强工作仅针对于图像亮度的提升,而对于噪声影响的处理较少,这些都不利于低光图像的增强.为了解决上述问题,论文提出了一种基于上下文Transformer的低光照图像增强算法.具体地,论文首先利用动态卷积网络对低光照图像进行特征提取;接着,设计了上下文Transformer对得到的特征图进行全局关联的深层特征提取,并使用金字塔池化模块进行去噪处理;最后,通过瓶颈结构的卷积网络输出得到增强后的图像.在多个主流数据集(LOL,LIME,DICM等)上的对比实验结果表明,与目前已有的主流工作相比,论文所提方法的结果不仅在主观视觉上有更好的视觉效果,更加符合人眼的视觉特点;而且在各种定量客观评价指标上也有良好的表现,尤其在PSNR和SSIM两个指标上有明显的提升.

低光照图像增强、Transformer、图像增强网络

51

TP751(遥感技术)

国家自然科学基金61872189

2023-05-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

237-244

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

51

2023,51(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn