邻域贪婪的Harris鹰优化求解立方体表面MTSP问题
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9722.2022.09.001

邻域贪婪的Harris鹰优化求解立方体表面MTSP问题

引用
立方体表面的多旅行商问题在实际生活中具有较大应用前景.论文提出了一种邻域贪婪的Harris鹰优化算法(NGHHO),该算法在较新的HHO算法基础上通过使用k-mean聚类增强初始解的质量,利用邻域搜索提高算法在TSP问题中的寻优性能,采用贪婪策略提升算法的收敛速度.通过在TSP benchmark测试集和随机点集上与其他经典的群智能算法进行测试比较,实验结果显示NGHHO寻优效果更好,并且显著克服了Harris鹰优化算法的寻优精度低、易陷入到局部最优的缺点,有效地求解了在特殊表面上的MTSP问题,具有较好的实际应用前景.

群智能算法、Harris鹰优化算法、多旅行商问题、立方体表面

50

TP18;TP301.6(自动化基础理论)

国家自然科学基金;国家自然科学基金;金科院高层次引进人才科研项目;江苏高校自然科学研究重大项目;江苏省高校优秀科技创新团队项目

2022-11-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

1869-1875,1906

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

50

2022,50(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn