10.3969/j.issn.1672-9722.2022.08.040
基于RF-PSO-SVM的烟叶等级分类模型
针对烤烟等级分类问题,论文利用数字图像处理技术对烤烟图像进行处理,根据烤烟等级影响因子,提取了烤烟正反两面的颜色特征、纹理特征与形状特征,并建立了一种烤烟等级分类模型——RF-PSO-SVM模型.首先利用RF-SVM对烤烟特征按其对分类模型的贡献度排序,筛选出对分类模型准确率影响较大的特征建立最优特征子集,并利用PSO对SVM的C、g参数寻优,建立RF-PSO-SVM分类模型,对筛选的特征子集进行学习训练,最后将RF-PSO-SVM分类模型与SVM分类模型、PSO-SVM分类模型进行对比,验证该方法的可靠性.经实验结果表明:1)烟叶的反面颜色特征与纹理特征对分类模型贡献度较大,形状特征对模型贡献度较小.2)RF-PSO-SVM算法建立的烟叶分类模型可以在保证分类准确率的情况下,降低分类算法的运行时间,减少了数据集的特征维度,对烟叶的分类识别具有一定的参考价值.
烟叶分级、特征选择、RF-PSO-SVM、分类模型
50
S572
贵州省普通高等学校工程研究中心建设项目;贵州省科技计划项目
2022-09-28(万方平台首次上网日期,不代表论文的发表时间)
共6页
1833-1838