10.3969/j.issn.1672-9722.2022.03.028
基于深度学习方法的中文情感分析
针对以文本词向量作为卷积神经网络的输入无法考虑情感特征对文本情感极性的影响、难以突出对类别更具代表性的词且卷积神经网络无法利用文本上下文信息等问题,提出一种基于权重分配的多通道卷积神经网络(WAMCCNN)和双向长短时记忆网络(BILSTM)模型相结合的方法.将文本词向量、情感词向量及词语的特征权重相互结合形成新的特征向量作为卷积网络不同通道的输入,使得模型能够从多方面的特征学习到文本的情感信息且有效利用了每个词语在句子中重要性的信息,获得更多的语义信息.同时,结合BILSTM模型学习到的包含文本上下文信息的全局特征,也解决了卷积神经网络无法利用文本上下文信息的问题.最后在新浪微博评论数据集和京东评论数据集上进行实验,结果表明,该模型分类准确率相比之前的基于深度学习的情感分析模型得到了明显的提升.
权重分配、卷积神经网络、双向长短时记忆网络、情感分析、多通道
50
TP391(计算技术、计算机技术)
2022-04-14(万方平台首次上网日期,不代表论文的发表时间)
共5页
603-607