基于改进型生成对抗网络的图像去噪方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9722.2022.01.038

基于改进型生成对抗网络的图像去噪方法

引用
图像去噪是一项具有挑战性的任务,其目的是去除附加噪声并保留所有有用信息.现有的方法主要集中在最小化均方误差(MSE),这会导致去噪图像丢失重要细节或在纹理丰富的区域变得过于平滑.因此论文引入生成对抗网络(GAN)用于图像去噪.论文的生成器采用SRDenseNet,很好地缓解了网络梯度易消失的问题,同时感知损失的引入使得对于人眼敏感的图像细节能得到很好的恢复.实验结果表明,论文方法在去噪过程中对细节的保留优于现有的去噪方法.与目前最先进的的去噪方法相比,论文方法得到的去噪结果更清晰,同时蕴含更多的细节.

生成对抗网络;生成器;判别器;图像去噪;感知损失

50

TP751(遥感技术)

2022-02-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

201-205

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

50

2022,50(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn