10.3969/j.issn.1672-9722.2021.11.026
基于依存树和注意力机制情感分析模型的改进
主流的情感分析模型是基于依存树和注意力机制的LSTM神经网络模型,但依存树捕捉依存关系较弱;注意力机制有时隐藏层和目标向量维度可能不一致,且归一化后对应的梯度将会变小,使模型很难训练.针对上述问题,提出一种基于依存图和双线性串联平衡因子的注意力机制情感分析模型(BSBDG-LSTM),引入依存图形结构,允许多个依存根节点存在,使依存关系理解更加充分;在注意力机制中添加可学习的参数矩阵和平衡因子,使隐藏层和向量的维度保持一致,并降低维度系数.电商评论数据的实验结果表明,BSADG-LSTM模型比LSTM模型、ATAE-LSTM模型、DAT-LSTM模型和DASN模型在情感分析中准确率更高,模型训练效果更好.
情感分析;依存图;注意力机制;LSTM神经网络
49
TP391(计算技术、计算机技术)
2021-12-06(万方平台首次上网日期,不代表论文的发表时间)
共5页
2310-2314