遗漏负样本挖掘的行人检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9722.2019.02.037

遗漏负样本挖掘的行人检测方法

引用
用于物体检测的许多现代方法,如Faster R-CNN,都是基于卷积神经网络的.在监控视频中,由于背景复杂和行人多姿态等原因,存在许多误检.挖掘难负示例的方法可以在一定程度上可以解决误检,Faster RCNN由于使用端到端的训练策略而没有使用挖掘难负示例的方法,生成样本时只考虑了真值候选框周围的样本.为此,论文提出了一种新颖的算法来挖掘被遗漏的负样本,当生成分类器的负样本时,综合利用候选框的置信度以产生更具代表性的负样本.该方法不仅在静态行人数据库(如INRIA)上,还在监控视频(PKU-SVD-B和Caltech)下的数据库上,对召回率,精度率和F1测量指标进行了一致的提高.我们的方法只需要改进样本生成算法,不需要任何额外的超参数,因此它不会增加Faster R-CNN的计算量,并且易于实现.

卷积神经网络、行人检测、挖掘难负示例方法

47

TJ765.4(火箭、导弹)

2020-01-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

436-441

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

47

2019,47(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn