优化初始聚类中心及确定K值的K-means算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9722.2018.01.006

优化初始聚类中心及确定K值的K-means算法

引用
K-means聚类算法中,我们需要输入两个参数,一个是聚类数K,另一个是初始聚类中心,初始聚类中心的选择对聚类结果有较大的影响,传统的K-means聚类算法随机挑选K个聚类中心,而随机挑选的聚类中心难免会取到孤立点,这将对聚类结果产生很大的影响.K值是用户输入,K值选取的不好也将影响聚类效果.论文提出了一种改进的K-means聚类算法,先根据类簇指标确定需要聚类的数K,之后采用基于密度的思想,首先将聚类样本分为核心点、边界点和孤立点,之后排除孤立点和边界点并取核心点的中心点作为K个聚类中心后再进行K-means聚类,实验表明改进后的算法比原始的K-means聚类算法准确性更高.

K-means聚类、聚类数、聚类中心、密度、孤立点

46

TP301.6(计算技术、计算机技术)

2018-03-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

21-24,113

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

46

2018,46(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn