基于SVM+GA的客运车辆到站时间预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9722.2017.06.011

基于SVM+GA的客运车辆到站时间预测

引用
准确的客运车辆到站预测是城市智慧交通的基础服务,有助于减少信息盲区,优化车辆运营调度.提出了一种基于SVM的到站预测模型,考虑道路因素、大型节假日、天气、路况、运行距离、运行时间、排班信息七个因素的影响,改进道路路段为道路类型因素,使模型更适合于客运车辆.在此基础上,用遗传算法做参数寻优提高模型训练效率.以深圳-广州的客运班车GPS数据完成实验,对比证明SVM+GA模型应用于客运车辆行程时间预测具有更好的适应客性,准确高效.

智慧交通、客运车辆行程时间、支持向量机、遗传算法

45

U491.1+4(交通工程与公路运输技术管理)

国家自然科学基金青年项目4140012165

2017-07-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

1062-1066,1085

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

45

2017,45(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn