基于量子粒子群神经网络的太阳黑子数预测磁
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn1672-9722.2014.10.024

基于量子粒子群神经网络的太阳黑子数预测磁

引用
为了提高太阳黑子数的预测精度,论文提出了一种基于量子粒子群神经网络预测太阳黑子数的模型(QPSO-BP 网络)。首先基于前18个太阳周(1755~1953)的年均值,利用量子粒子群算法优化 BP 神经网络的权值和阀值,完成网络训练训;然后对第19太阳周(1954~2013)年均值进行预测,检验模型的预测能力。与普通 BP 神经网络预测的对比结果表明,该模型在逼近能力和预测精度两方面均有明显提高,从而表明基于量子粒子群优化的训练方法对于提高神经网络预测能力具有一定潜力。

太阳黑子年均值、量子粒子群优化、BP 神经网络、时间序列预测

TP391(计算技术、计算机技术)

2014-10-31(万方平台首次上网日期,不代表论文的发表时间)

共5页

1853-1856,1893

相关文献
评论
暂无封面信息
查看本期封面目录

计算机与数字工程

1672-9722

42-1372/TP

2014,(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn