基于并行注意力UNet的裂缝检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7544/issn1000-1239.2021.20210335

基于并行注意力UNet的裂缝检测方法

引用
裂缝对公共设施而言存在着安全隐患,因此裂缝检测是公共设施进行维护的重要手段.由于裂缝图像中存在噪声、光线、阴影等因素干扰,神经网络在训练时极易被影响,导致预测结果出现偏差,降低预测效果.为减少这些干扰,设计了一个并行注意力机制,并将其嵌入到UNet网络的解码部分,进而提出了并行注意力UNet(parallel attention based UNet,PA-UNet).该方法分别从通道和空间2个维度加大裂缝特征权重以抑制干扰,然后对这2个维度生成的特征进行融合,以获得更具互补性的裂缝特征.为了验证该方法的有效性,选取了4个数据集进行实验,结果表明该方法较现有的主流方法,裂缝检测效果更加优异.同时,为了验证并行注意力机制的有效性,选取了4种注意力机制与其进行对比实验,结果表明并行注意力机制效果优于其他注意力机制.

裂缝检测;并行注意力机制;UNet;抑制干扰;互补性

58

TP391(计算技术、计算机技术)

江苏省自然科学基金项目;中央高校基本科研业务费专项资金;河海大学海岸灾害及防护教育部重点实验室开放基金项目

2021-09-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

1718-1726

相关文献
评论
暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

58

2021,58(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn