一种实用高效的文本分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

一种实用高效的文本分类算法

引用
在模式识别研究领域已有的分类算法中,大多数都是基于向量空间模型的算法,其中使用范围最广的是kNN算法.但是,其中的大多数算法都因为计算复杂度太高而不适用于大规模的场合.而且,当训练样本集增大时都需要重新生成分类器,可扩展性差.为此,提出了互依赖和等效半径的概念,并将两者相结合,提出新的分类算法--基于互依赖和等效半径、易更新的分类算法SECTILE.SECTILE计算复杂度较低,而且扩展性能较好,适用于大规模场合.将SECTILE算法应用于中文文本分类,并与kNN算法和类中心向量法进行比较,结果表明,在提高分类精度的同时,SECTILE还可以大幅度提高分类速度,有利于对大规模信息样本进行实时在线的自动分类.

分类、等效半径、向量空间、互依赖、SECTILE

42

TP391(计算技术、计算机技术)

国家自然科学基金60173027

2005-03-31(万方平台首次上网日期,不代表论文的发表时间)

共9页

85-93

相关文献
评论
暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

42

2005,42(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn