加入跳跃连接的深度嵌入K-means聚类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.009348

加入跳跃连接的深度嵌入K-means聚类

引用
现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上述问题,本文提出了一种新的深度嵌入K-means算法(SDEKC).首先,在低维特征提取阶段,在对称的卷积自编码器中相对应的编码器与解码器之间以一定的权重加入两个跳跃连接,以减弱解码器对编码器的编码要求同时突出卷积自编码器的编码能力,这样可以更好地保留原始数据空间中蕴含的聚类结构信息;其次,在聚类阶段,通过一个标准正交变换矩阵将低维数据空间转换为一个新的揭示聚类结构信息的空间;最后,本文以端到端的方式采用贪婪算法迭代优化数据的低维表示及其聚类,在6个真实数据集上验证了本文提出新算法的有效性.

跳跃连接、深度学习、卷积自编码器、嵌入K-means

33

TP391;TN95;TP181

国家自然科学基金;国家自然科学基金;山西省研究生教育教学改革课题;山西省横向课题

2024-01-20(万方平台首次上网日期,不代表论文的发表时间)

共11页

11-21

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

33

2024,33(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn