基于熵的平衡子空间K-means算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008857

基于熵的平衡子空间K-means算法

引用
在许多数据挖掘的实际应用中要求每一个类别的实例数量相对平衡.而独立子空间聚类的熵加权K-means算法(EWKM)会产生不均衡的划分,聚类质量很差.本文定义了一种兼顾平衡划分与特征分布的多目标熵,然后应用该熵改进了 EWKM算法的目标函数,同利用迭代方法和交替方向乘子法设计其求解流程,并提出基于熵的平衡子空间K-means算法(EBSKM).最后,在UCI、UCR等公开数据集进行聚类实验,结果表明所提算法在准确率和平衡性方面都优于同类算法.

子空间聚类、平衡聚类、特征加权、K-means

31

TP391.41;O157.5;O224

福建省自然科学基金项目2018J01794

2023-01-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

266-272

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn