基于增量预训练和对抗训练的文本匹配模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008778

基于增量预训练和对抗训练的文本匹配模型

引用
文本匹配是自然语言理解的关键技术之一,其任务是判断两段文本的相似程度.近年来随着预训练模型的发展,基于预训练语言模型的文本匹配技术得到了广泛的应用.然而,这类文本匹配模型仍然面临着在某一特定领域泛化能力不佳、语义匹配时鲁棒性较弱这两个挑战.为此,本文提出了基于低频词的增量预训练及对抗训练方法来提高文本匹配模型的效果.本文通过针对领域内低频词的增量预训练,帮助模型向目标领域迁移,增强模型的泛化能力;同时本文尝试多种针对低频词的对抗训练方法,提升模型对词级别扰动的适应能力,提高模型的鲁棒性.本文在LCQMC数据集和房产领域文本匹配数据集上的实验结果表明,增量预训练、对抗训练以及这两种方式的结合使用均可明显改善文本匹配结果.

文本匹配、预训练模型、增量预训练、对抗训练、低频词、深度学习、自然语言处理

31

TP391;TP183;TP273.4

国家自然科学基金62176074

2022-11-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

349-357

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn