基于EMD-TCN-ELM的短期电力负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008781

基于EMD-TCN-ELM的短期电力负荷预测

引用
为降低负荷序列的复杂性,利用EMD分解方法得到不同的分量.为降低训练时间和减小分量逐个预测所带来的累计误差,利用分量过零率大小将分量重构为高频分量和低频分量,利用TCN模型预测负荷的高频分量,利用极限学习机ELM预测负荷低频分量.通过实验将所提模型EMD-TCN-ELM分别与3个单模型TCN、ELM、LSTM和3个混合模型EMD-TCN、EMD-ELM、EMD-LSTM比较,其MAPE分别降低0.538%,1.866%,1.191%,0.026%,1.559%,0.323%,所提模型的预测精度最高.且所提模型在预测精度前3的模型中训练时间最短,验证了所提模型在负荷预测精度和训练时间方面的优越性.

负荷预测、经验模态分解、时序卷积网络、极限学习机、电力系统

31

TM715;TP183;TP391

2022-11-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

223-229

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn