基于节点-邻居图相似性的社会网络匿名技术
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008822

基于节点-邻居图相似性的社会网络匿名技术

引用
利用传统的k匿名技术在社会网络中进行隐私保护时会存在聚类准则单一、图中数据信息利用不足等问题.针对该问题,提出了一种利用Kullback-Leibler(KL)散度衡量节点1-邻居图相似性的匿名技术(anonymization techniques for measuring the similarity of node 1-neighbor graph based on Kullback-Leibler divergence,SNKL).根据节点1-邻居图分布的相似性对原始图节点集进行划分,按照划分好的类进行图修改,使修改后的图满足k匿名,完成图的匿名发布.实验结果表明,SNKL方法与HIGA方法相比在聚类系数上的改变量平均降低了17.3%,同时生成的匿名图与原始图重要性节点重合度保持在95%以上.所提方法在有效保证隐私的基础上,可以显著的降低对原始图结构信息的改变.

隐私保护、社会网络、概率不可区分性、k匿名、1-邻居图、网络安全

31

TP301;D923.8;C913.9

国家自然科学基金;国家自然科学基金;国家自然科学基金;福建省科技项目;企事业合作项目

2022-11-16(万方平台首次上网日期,不代表论文的发表时间)

共10页

21-30

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn