电力巡检中的无人机群路径规划算法
随着无人机技术的飞速发展, 无人机被广泛用于各种领域的巡检任务. 近年来, 电力网络的规模和长度都在快速增长, 无人机因其独特的性能和优势成为了电力巡检的首选, 无人机巡检不仅能保证安全性, 还能有效地提高巡检效率, 而路径规划是其在实际应用中的关键一步. 本文提出了一种新的混合元启发式方法, 用于解决电力巡检中带有多个站点的无人机群路径规划问题. 该算法在自适应大邻域搜索的框架下添加变邻域下降为下属策略, 加强邻域搜索能力, 增加找到更优解的可能. 实验结果表明, 本文提出的算法能够有效地解决该问题, 并且具有较好的稳定性和鲁棒性. 另外, 通过实验对比了本算法和其他元启发式算法, 验证了本算法能有效地减少巡检中使用的无人机数量和时间成本.
电力巡检;无人机巡检;多站点的无人机群路径规划;自适应大邻域搜索算法;变邻域下降
31
国家重点研发计划2020YFB1600400
2022-03-16(万方平台首次上网日期,不代表论文的发表时间)
共7页
241-247